Diet-Induced Metabolic Dysfunction of Hypothalamic Nutrient Sensing in Rodents

Author:

Arrieta-Cruz Isabel,Torres-Ávila Blanca Samara,Martínez-Coria Hilda,López-Valdés Héctor EduardoORCID,Gutiérrez-Juárez Roger

Abstract

A sedentary lifestyle and excessive nutrient intake resulting from the consumption of high-fat and calorie-rich diets are environmental factors contributing to the rapid growth of the current pandemic of type 2 diabetes mellitus (DM2). Fasting hyperglycemia, an established hallmark of DM2, is caused by excessive production of glucose by the liver, resulting in the inability of insulin to suppress endogenous glucose production. To prevent inappropriate elevations of circulating glucose resulting from changes in nutrient availability, mammals rely on complex mechanisms for continuously detecting these changes and to respond to them with metabolic adaptations designed to modulate glucose output. The mediobasal hypothalamus (MBH) is the key center where nutritional cues are detected and appropriate modulatory responses are integrated. However, certain environmental factors may have a negative impact on these adaptive responses. For example, consumption of a diet enriched in saturated fat in rodents resulted in the development of a metabolic defect that attenuated these nutrient sensing mechanisms, rendering the animals prone to developing hyperglycemia. Thus, high-fat feeding leads to a state of “metabolic disability” in which animals’ glucoregulatory responses fail. We postulate that the chronic faltering of the hypothalamic glucoregulatory mechanisms contributes to the development of metabolic disease.

Funder

National Autonomous University of Mexico

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3