Lack of myostatin impairs mechanical performance and ATP cost of contraction in exercising mouse gastrocnemius muscle in vivo

Author:

Giannesini Benoît1,Vilmen Christophe1,Amthor Helge2,Bernard Monique1,Bendahan David1

Affiliation:

1. Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, 13385, Marseille, France;

2. Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, Institut National de la Santé et de la Recherche Médicale U 974, CNRS UMR 7215, 75013 Paris, France

Abstract

Although it is well established that the lack of myostatin (Mstn) promotes skeletal muscle hypertrophy, the corresponding changes regarding force generation have been studied mainly in vitro and remain conflicting. Furthermore, the metabolic underpinnings of these changes are very poorly documented. To clarify this issue, we have investigated strictly noninvasively in vivo the impact of the lack of Mstn on gastrocnemius muscle function and energetics in Mstn-targeted knockout ( Mstn−/−) mice using 1H-magnetic resonance (MR) imaging and 31P-MR spectroscopy during maximal repeated isometric contractions induced by transcutaneous electrostimulation. In Mstn−/− animals, although body weight, gastrocnemius muscle volume, and absolute force were larger (+38, +118, and +34%, respectively) compared with wild-type ( Mstn+/+) mice, specific force (calculated from MR imaging measurements) was significantly lower (−36%), and resistance to fatigue was decreased. Besides, Mstn deficiency did not affect phosphorylated compound concentrations and intracellular pH at rest but caused a large increase in ATP cost of contraction (up to +206% compared with Mstn+/+) throughout the stimulation period. Further, Mstn deficiency limits the shift toward oxidative metabolism during muscle activity despite the fact that oxidative ATP synthesis capacity was not altered. Our data demonstrate in vivo that the absence of Mstn impairs both mechanical performance and energy cost of contraction in hypertrophic muscle. These findings must be kept in mind when considering Mstn as a potential therapeutic target for increasing muscle mass in patients suffering from muscle-wasting disorders.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3