Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women

Author:

Petrella John K.,Kim Jeong-su,Cross James M.,Kosek David J.,Bamman Marcas M.

Abstract

Skeletal muscle stem (satellite) cells supporting growth/regeneration are thought to be activated and incorporated into growing myofibers by both endocrine and locally expressed autocrine/paracrine growth factors, the latter being load sensitive. We recently found that myofiber hypertrophy with resistance training is superior in young men (YM) vs. young women and older adults (Kosek DJ, Kim JS, Petrella JK, Cross JM, and Bamman MM. J Appl Physiol 101: 531–544, 2006). We hypothesized that the advanced myofiber hypertrophy in YM is facilitated by myonuclear addition in response to a milieu promoting stem cell activation. Twenty-six young (27.0 ± 1 yr, 50% women) and 26 older (63.7 ± 1 yr, 50% women) adults completed 16 wk of knee extensor resistance training. Vastus lateralis biopsies were obtained at baseline, 24 h after one bout, and after 16 wk. Muscle stem cells were identified immunohistochemically with anti-neural cell adhesion molecule (NCAM+). Muscle transcript levels of IGF-I and mechanogrowth factor (MGF) were determined by RT-PCR. Serum IGF-I, IGF-binding protein (IGFBP)-3, IGFBP-1, total and free testosterone, sex hormone-binding globulin (SHBG), and androstenedione were assessed by radioimmunoassay. Myofiber hypertrophy was twofold greater in YM vs. others, and only YM increased NCAM+ cells per 100 myofibers (49%) and myonuclei per fiber (19%) ( P < 0.05). IGF-IEa mRNA was higher in young and increased acutely (29%) with summation by 16 wk (96%) ( P < 0.05). MGF mRNA increased only in young after one bout (81%) and by 16 wk (85%) ( P < 0.001). Circulating IGF-I was twofold higher in young, whereas IGFBP-1 was lowest in YM ( P < 0.05). Among men, free testosterone was 59% higher in YM ( P < 0.01). Myonuclear addition was most effectively accomplished in YM, which likely drove the superior growth.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 297 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3