Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78–84 and 23–32 yr olds

Author:

Hasten Debbie L.1,Pak-Loduca Jina12,Obert Kathleen A.2,Yarasheski Kevin E.12

Affiliation:

1. Claude D. Pepper Older Americans Independence Center, Divisionsof Endocrinology, Diabetes and Metabolism, and

2. Geriatrics and Gerontology, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

We determined whether short-term weight-lifting exercise increases the synthesis rate of the major contractile proteins, myosin heavy chain (MHC), actin, and mixed muscle proteins in nonfrail elders and younger women and men. Fractional synthesis rates of mixed, MHC, and actin proteins were determined in seven healthy sedentary 23- to 32-yr-old and seven healthy 78- to 84-yr-old participants in paired studies done before and at the end of a 2-wk weight-lifting program. The in vivo rate of incorporation of 1-[13C]leucine into vastus lateralis MHC, actin, and mixed proteins was determined using a 14-h constant intravenous infusion of 1-[13C]leucine. Before exercise, the mixed and MHC fractional synthetic rates were lower in the older than in the younger participants ( P ≤ 0.04). Baseline actin protein synthesis rates were similar in the two groups ( P = not significant). Over a 2-wk period, participants completed ten 1- to 1.5-h weight-lifting exercise sessions: 2–3 sets per day of 9 exercises, 8–12 repetitions per set, at 60–90% of maximum voluntary muscle strength. At the end of exercise, MHC and mixed protein synthetic rates increased in the younger (88 and 121%) and older participants (105 and 182%; P < 0.001 vs. baseline). These findings indicate that MHC and mixed protein synthesis rates are reduced more than actin in advanced age. Similar to that of 23–32 yr olds, the vastus lateralis muscle in 78–84 yr olds retains the capacity to increase MHC and mixed protein synthesis rates in response to short-term resistance exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3