Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats

Author:

Peterside Iyalla E.1,Selak Mary A.1,Simmons Rebecca A.1

Affiliation:

1. Department of Pediatrics, Children's Hospital and University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

Intrauterine growth retardation (IUGR) has been linked to the development of type 2 diabetes in adulthood. We have developed an IUGR model in the rat whereby the animals develop diabetes between 3 and 6 mo of age that is associated with insulin resistance. Alterations in hepatic glucose metabolism are known to contribute to the hyperglycemia of diabetes; however, the mechanisms underlying this phenomenon have not been fully explained. To address this issue, intact liver mitochondria were isolated from IUGR and control offspring at different ages to examine the nature and time course of possible defects in oxidative metabolism. Phospho enolpyruvate carboxykinase (PEPCK) expression was also measured in livers of IUGR and control offspring. Rates of ADP-stimulated (state 3) oxygen consumption were increased for succinate in the fetus and for α-ketoglutarate and glutamate at day 1, reflecting possible compensatory metabolic adaptations to acute hypoxia and acidosis in IUGR rats. By day 14, oxidation of glutamate and α-ketoglutarate had returned to normal, and by day 28, oxidation rates of pyruvate, glutamate, succinate, and α-ketoglutarate were significantly lower than those of controls. Rotenone-sensitive NADH-O2 oxidoreductase activity was similar in control and IUGR mitochondria at all ages, showing that the defect responsible for decreased pyruvate, glutamate, and α-ketoglutarate oxidation in IUGR liver precedes the electron transport chain and involves pyruvate and α-ketoglutarate dehydrogenases. Increased levels of manganese superoxide dismutase suggest that an antioxidant response has been mounted, and hydroxynonenal (HNE) modification of pyruvate dehydrogenase E2-(catalytic) and E3-binding protein subunits suggests that HNE-induced inactivation of this key enzyme may play a role in the mechanism of injury. The level of PEPCK mRNA was increased 250% in day 28 IUGR liver, indicating altered gene expression of the gluconeogenic enzyme that precedes overt hyperglycemia. These results indicate that uteroplacental insufficiency impairs mitochondrial oxidative phosphorylation in the liver and that this derangement predisposes the IUGR rat to increased hepatic glucose production by suppressing pyruvate oxidation and increasing gluconeogenesis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3