Molecular Mechanisms of Growth Differences in Gymnocypris przewalskii and Gymnocypris eckloni through a Comparative Transcriptome Perspective

Author:

Zhao Yun1,Zhou Junming1ORCID

Affiliation:

1. Key Laboratory of Plateau Wetland Ecology and Environmental Protection, Xichang University, Xichang 615013, China

Abstract

Genetic composition plays a crucial role in the growth rate of species, and transcriptomics provides a potent tool for studying genetic aspects of growth. We explored the growth rates and transcriptomes of the Cyprinids G. przewalskii (GP) and G. eckloni (GE). A total of 500 individuals of G. przewalskii and G. eckloni, matched in size, were separately cultured for 9 months in six cement tanks (each group with three replicates). Growth indices were measured, revealing that the growth rate of GE was greater than that of GP (p < 0.05), while there was no significant difference in survival rates (p > 0.05). Simultaneously, we conducted RNA-Seq on the muscles of both GP and GE. The results indicated a significant difference of gene expression between GP and GE, identifying 5574 differentially expressed genes (DEGs). Quantitative real-time reverse transcription–polymerase chain reaction of 10 DEGs demonstrated consistency in expression profiles with the results from the RNA-Seq analysis. The DEGs were significantly enriched in glycolysis/gluconeogenesis (ko00010), arachidonic acid formation (ko00061), arginine biosynthesis (ko00220), and the MAPK (ko04013), PI3K-Akt (ko04151), mTOR (ko04150), and TGF-β (ko04350) signal pathways, as revealed by Gene Ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. This study also identified some growth-related DEGs, such as IGF2, Noggin, Decorin and others. Notably, the low expression of IGF2 may be a factor contributing to the slower growth of GP than GE.

Funder

PhD Start-up Project of Xichang University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3