In vivo insulin action in genetic models of hypertension

Author:

Frontoni S.1,Ohman L.1,Haywood J. R.1,DeFronzo R. A.1,Rossetti L.1

Affiliation:

1. Department of Medicine, University of Texas Health Science Center, SanAntonio.

Abstract

Insulin resistance has been described in nonobese subjects with essential hypertension. At present it is unknown whether hypertension per se may lead to the onset of insulin resistance. To examine this question we studied in vivo insulin action in two rat models of genetic hypertension. Four groups of conscious rats were studied: Milan hypertensive (MHS), Milan normotensive (MNS), spontaneously hypertensive (SHR), and Wistar-Kyoto (WKY). Mean arterial pressure was increased in SHR vs. WKY in both the fed (184 +/- 5 vs. 126 +/- 6 mmHg; P less than 0.001) and fasting (160 +/- 5 vs. 129 +/- 5; P less than 0.001) states. During high-dose insulin clamps, total body glucose uptake (mg.kg-1.min-1) was similar in MNS (28.7 +/- 1.4) vs. MHS (33.6 +/- 3.0) and in WKY (34.6 +/- 1.8) vs. SHR (35.7 +/- 2.4). During low-dose insulin clamps, suppression of hepatic glucose production (3.5 +/- 0.6 vs. 3.0 +/- 0.5 mg.kg-1.min-1) and stimulation of glycolysis (12.9 +/- 0.8 vs. 14.4 +/- 1.5 mg.kg-1.min-1) were similar in WKY vs. SHR, whereas glucose uptake (24.6 +/- 1.9 vs. 18.3 +/- 1.2 mg.kg-1.min-1; P less than 0.01) and muscle glycogenic rate (10.2 +/- 1.1 vs. 6.5 +/- 1.1 mg.kg-1.min-1; P less than 0.05) were increased in SHR vs. WKY. In conclusion, 1) feeding markedly augments blood pressure in hypertensive but not in normotensive rats, and 2) hepatic and muscle insulin sensitivity are normal or increased in two different rat models of genetic hypertension. These results provide evidence that high blood pressure per se does not invariably lead to the development of insulin resistance.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3