Insulin resistance in soleus muscle from obese Zucker rats. Involvement of several defective sites

Author:

Crettaz Marco1,Prentki Marc1,Zaninetti Daniel1,Jeanrenaud Bernard1

Affiliation:

1. Laboratoires de Recherches Médicales, Geneva University Medical School, 64 Avenue de la Roseraie, 1205 Geneva, Switzerland

Abstract

1. The effect of insulin upon glucose transport and metabolism in soleus muscles of genetically obese (fa/fa) and heterozygote lean Zucker rats was investigated at 5–6 weeks and 10–11 weeks of age. Weight-standardized strips of soleus muscles were used rather than the intact muscle in order to circumvent problems of diffusion of substrates. 2. In younger obese rats (5–6 weeks), plasma concentrations of immunoreactive insulin were twice those of controls, whereas their circulating triacylglycerol concentrations were normal. Insulin effects upon 2-deoxyglucose uptake and glucose metabolism by soleus muscles of these rats were characterized by both a decreased sensitivity and a decrease in the maximal response of this tissue to the hormone. 3. In older obese rats (10–11 weeks), circulating concentrations of insulin and triacylglycerols were both abnormally elevated. A decrease of 25–35% in insulin-binding capacity to muscles of obese rats was observed. The soleus muscles from the older obese animals also displayed decreased sensitivity and maximal response to insulin. However, at a low insulin concentration (0.1m-i.u./ml), 2-deoxyglucose uptake by muscles of older obese rats was stimulated, but such a concentration was ineffective in stimulating glucose incorporation into glycogen, and glucose metabolism by glycolysis. 4. Endogenous lipid utilization by muscle was calculated from the measurements of O2 consumption, and glucose oxidation to CO2. The rate of utilization of fatty acids was normal in muscles of younger obese animals, but increased in those of the older obese rats. Increased basal concentrations of citrate, glucose 6-phosphate and glycogen were found in muscles of older obese rats and may reflect intracellular inhibition of glucose metabolism as a result of increased lipid utilization. 5. Thus several abnormalities are responsible for insulin resistance of muscles from obese Zucker rats among which we have observed decreased insulin binding, decreased glucose transport and increased utilization of endogenous fatty acid which could inhibit glucose utilization.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3