Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans

Author:

Biolo G.1,Maggi S. P.1,Williams B. D.1,Tipton K. D.1,Wolfe R. R.1

Affiliation:

1. Department of Internal Medicine, University of Texas Medical Branch,Galveston.

Abstract

The rates of protein synthesis and degradation and of amino acid transport were determined in the leg muscle of untrained postabsorptive normal volunteers at rest and approximately 3 h after a resistance exercise routine. The methodology involved use of stable isotopic tracers of amino acids, arteriovenous catheterization of the femoral vessels, and biopsy of the vastus lateralis muscle. During postexercise recovery, the rate of intramuscular phenylalanine utilization for protein synthesis increased above the basal value by 108 +/- 18%, whereas the rate of release from proteolysis increased by 51 +/- 17%. Muscle protein balance improved (P < 0.05) after exercise but did not become positive (from -15 +/- 12 to -6 +/- 3 nmol phenylalanine.min-1.100 ml leg volume-1). After exercise, rates of inward transport of leucine, lysine, and alanine increased (P < 0.05) above the basal state from 132 +/- 16 to 208 +/- 29, from 122 +/- 8 to 260 +/- 8, and from 384 +/- 71 to 602 +/- 89 nmol.min-1.100 ml leg-1, respectively. Transport of phenylalanine did not change significantly. These results indicate that, during recovery after resistance exercise, muscle protein turnover is increased because of an acceleration of synthesis and degradation. A postexercise acceleration of amino acid transport may contribute to the relatively greater stimulation of protein synthesis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3