Blood-brain barrier permeability of glucose and ketone bodies during short-term starvation in humans

Author:

Hasselbalch S. G.1,Knudsen G. M.1,Jakobsen J.1,Hageman L. P.1,Holm S.1,Paulson O. B.1

Affiliation:

1. Department of Neurology, University of Hospital, Copenhagen, Denmark.

Abstract

The blood-brain barrier (BBB) permeability for glucose and beta-hydroxybutyrate (beta-OHB) was studied by the intravenous double-indicator method in nine healthy subjects before and after 3.5 days of starvation. In fasting, mean arterial plasma glucose decreased and arterial concentration of beta-OHB increased, whereas cerebral blood flow remained unchanged. The permeability-surface area product for BBB glucose transport from blood to brain (PS1) increased by 55 +/- 31%, whereas no significant change in the permeability from brain back to blood (PS2) was found. PS1 for beta-OHB remained constant during starvation. The expected increase in PS1 due to the lower plasma glucose concentration was calculated to be 22% using previous estimates of maximal transport velocity and Michaelis-Menten affinity constant for glucose transport. The determined increase was thus 33% higher than the expected increase and can only be partially explained by the decrease in plasma glucose. It is concluded that a modest upregulation of glucose transport across the BBB takes place after starvation. Brain transport of beta-OHB did not decrease as expected from the largely increased beta-OHB arterial level. This might be interpreted as an increase in brain transport of beta-OHB, which could be caused by induction mechanisms, but the large nonsaturable component of beta-OHB transport makes such a conclusion difficult. However, beta-OHB blood concentration and beta-OHB influx into the brain increased by > 10 times. This implies that the influx of ketone bodies into the brain is largely determined by the amount of ketones present in the blood, and any condition in which ketonemia occurs will lead to an increased ketone influx.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3