Mathematical analysis of circadian disruption and metabolic re-entrainment of hepatic gluconeogenesis: the intertwining entraining roles of light and feeding

Author:

Bae Seul-A1,Androulakis Ioannis P.123

Affiliation:

1. Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey

2. Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey

3. Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey

Abstract

The circadian rhythms influence the metabolic activity from molecular level to tissue, organ, and host level. Disruption of the circadian rhythms manifests to the host’s health as metabolic syndromes, including obesity, diabetes, and elevated plasma glucose, eventually leading to cardiovascular diseases. Therefore, it is imperative to understand the mechanism behind the relationship between circadian rhythms and metabolism. To start answering this question, we propose a semimechanistic mathematical model to study the effect of circadian disruption on hepatic gluconeogenesis in humans. Our model takes the light-dark cycle and feeding-fasting cycle as two environmental inputs that entrain the metabolic activity in the liver. The model was validated by comparison with data from mice and rat experimental studies. Formal sensitivity and uncertainty analyses were conducted to elaborate on the driving forces for hepatic gluconeogenesis. Furthermore, simulating the impact of Clock gene knockout suggests that modification to the local pathways tied most closely to the feeding-fasting rhythms may be the most efficient way to restore the disrupted glucose metabolism in liver.

Funder

National Science Foundation Graduate Research Fellowship

National Institute of General Medical Sciences of the National Institutes of Health

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3