The Synergistic Role of Light-Feeding Phase Relations on Entraining Robust Circadian Rhythms in the Periphery

Author:

Bae Seul-A1,Androulakis Ioannis P123

Affiliation:

1. Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

2. Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

3. Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA

Abstract

The feeding and fasting cycles are strong behavioral signals that entrain biological rhythms of the periphery. The feeding rhythms synchronize the activities of the metabolic organs, such as liver, synergistically with the light/dark cycle primarily entraining the suprachiasmatic nucleus. The likely phase misalignment between the feeding rhythms and the light/dark cycles appears to induce circadian disruptions leading to multiple physiological abnormalities motivating the need to investigate the mechanisms behind joint light-feeding circadian entrainment of peripheral tissues. To address this question, we propose a semimechanistic mathematical model describing the circadian dynamics of peripheral clock genes in human hepatocyte under the control of metabolic and light rhythmic signals. The model takes the synergistically acting light/dark cycles and feeding rhythms as inputs and incorporates the activity of sirtuin 1, a cellular energy sensor and a metabolic enzyme activated by nicotinamide adenine dinucleotide. The clock gene dynamics was simulated under various light-feeding phase relations and intensities, to explore the feeding entrainment mechanism as well as the convolution of light and feeding signals in the periphery. Our model predicts that the peripheral clock genes in hepatocyte can be completely entrained to the feeding rhythms, independent of the light/dark cycle. Furthermore, it predicts that light-feeding phase relationship is a critical factor in robust circadian oscillations.

Publisher

SAGE Publications

Subject

Computer Science Applications,Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3