Ghrelin in rat pancreatic islets decreases islet blood flow

Author:

Drott Carl Johan1,Franzén Petra1,Carlsson Per-Ola12

Affiliation:

1. Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden

2. Department of Medical Sciences, Uppsala University, Uppsala, Sweden

Abstract

The peptide ghrelin is mainly produced in some of the epithelial cells in the stomach, but also, during starvation, by the ε-cells in the endocrine pancreas. Ghrelin, as an endogenous ligand for the growth hormone secretagogue receptor (GHS-R1α), exerts a variety of metabolic functions including stimulation of appetite and weight gain. Its complete role is not yet fully understood, including whether it has any vascular functions. The present study evaluated if ghrelin affects pancreatic and islet blood flow. Ghrelin and the GHS-R1α receptor antagonist GHRP-6 were injected intravenously in rats followed by blood flow measurements using a microsphere technique. Ghrelin decreased, while GHRP-6 in fasted, but not fed, rats selectively increased islet blood flow fourfold. GHS-R1α was identified not only on glucagon-producing cells but also seemed to be present in the islet arterioles. GHRP-6 in fasted rats, only, also improved the peak insulin response to glucose in vivo, thereby substantially blunting the hyperglycemia. GHRP-6 doubled glucose-stimulated insulin release in vitro of both islets obtained from fed and fasted rats. Our results indicate a novel role for endogenous ghrelin acting directly or indirectly as a local vasoconstrictor in the islets during fasting, thereby restricting the insulin response to hyperglycemia. This is to the best of our knowledge the first report that shows this physiological mechanism to restrict insulin delivery from the islets by acting on the vasculature; a mode of action that can be envisaged to complement the previously well-described mechanisms of ghrelin acting directly on the islet endocrine cells.

Funder

Vetenskapsrådet (Swedish Research Council)

The Swedish Child Diabetes Fund

EXODIAB

the Swedish Diabetes Foundation

Diabetes Wellness Sweden

Novo Nordisk Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3