High Coexpression of the Ghrelin and LEAP2 Receptor GHSR With Pancreatic Polypeptide in Mouse and Human Islets

Author:

Gupta Deepali1,Dowsett Georgina K C2,Mani Bharath K1,Shankar Kripa1,Osborne-Lawrence Sherri1,Metzger Nathan P1,Lam Brian Y H2,Yeo Giles S H2ORCID,Zigman Jeffrey M134ORCID

Affiliation:

1. Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA

2. Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK

3. Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA

4. Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA

Abstract

Abstract Islets represent an important site of direct action of the hormone ghrelin, with expression of the ghrelin receptor (growth hormone secretagogue receptor; GHSR) having been localized variably to alpha cells, beta cells, and/or somatostatin (SST)-secreting delta cells. To our knowledge, GHSR expression by pancreatic polypeptide (PP)-expressing gamma cells has not been specifically investigated. Here, histochemical analyses of Ghsr-IRES-Cre × Cre-dependent ROSA26-yellow fluorescent protein (YFP) reporter mice showed 85% of GHSR-expressing islet cells coexpress PP, 50% coexpress SST, and 47% coexpress PP + SST. Analysis of single-cell transcriptomic data from mouse pancreas revealed 95% of Ghsr-expressing cells coexpress Ppy, 100% coexpress Sst, and 95% coexpress Ppy + Sst. This expression was restricted to gamma-cell and delta-cell clusters. Analysis of several single-cell human pancreatic transcriptome data sets revealed 59% of GHSR-expressing cells coexpress PPY, 95% coexpress SST, and 57% coexpress PPY + SST. This expression was prominent in delta-cell and beta-cell clusters, also occurring in other clusters including gamma cells and alpha cells. GHSR expression levels were upregulated by type 2 diabetes mellitus in beta cells. In mice, plasma PP positively correlated with fat mass and with plasma levels of the endogenous GHSR antagonist/inverse agonist LEAP2. Plasma PP also elevated on LEAP2 and synthetic GHSR antagonist administration. These data suggest that in addition to delta cells, beta cells, and alpha cells, PP-expressing pancreatic cells likely represent important direct targets for LEAP2 and/or ghrelin both in mice and humans.

Funder

Diana and Richard C. Strauss Professorship in Biomedical Research

Bruce G. Brookshire Professorship in Medicine

Kent and Jodi Foster Distinguished Chair in Endocrinology

Honor of Daniel Foster

University of Texas Southwestern Medical Center

National Institutes of Health

Biotechnology and Biological Sciences Research Council

UK Medical Research Council

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3