Author:
Fogt Donovan L.,Pan Shujia,Lee Sukho,Ding Zhenping,Scrimgeour Angus,Lawrence John C.,Ivy John L.
Abstract
Insulin-stimulated muscle glucose uptake is inversely associated with the muscle glycogen concentration. To investigate whether this association is a cause and effect relationship, we compared insulin-stimulated muscle glucose uptake in noncontracted and postcontracted muscle of GSL3-transgenic and wild-type mice. GSL3-transgenic mice overexpress a constitutively active form of glycogen synthase, which results in an abundant storage of muscle glycogen. Muscle contraction was elicited by in situ electrical stimulation of the sciatic nerve. Right gastrocnemii from GSL3-transgenic and wild-type mice were subjected to 30 min of electrical stimulation followed by hindlimb perfusion of both hindlimbs. Thirty minutes of contraction significantly reduced muscle glycogen concentration in wild-type (49%) and transgenic (27%) mice, although transgenic mice retained 168.8 ± 20.5 μmol/g glycogen compared with 17.7 ± 2.6 μmol/g glycogen for wild-type mice. Muscle of transgenic and wild-type mice demonstrated similar pre- (3.6 ± 0.3 and 3.9 ± 0.6 μmol·g-1·h-1 for transgenic and wild-type, respectively) and postcontraction (7.9 ± 0.4 and 7.0 ± 0.4 μmol·g-1·h-1 for transgenic and wild-type, respectively) insulin-stimulated glucose uptakes. However, the [14C]glucose incorporated into glycogen was greater in noncontracted (151%) and postcontracted (157%) transgenic muscle vs. muscle of corresponding wild-type mice. These results indicate that glycogen synthase activity is not rate limiting for insulin-stimulated glucose uptake in skeletal muscle and that the inverse relationship between muscle glycogen and insulin-stimulated glucose uptake is an association, not a cause and effect relationship.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献