Control of glycogen synthesis is shared between glucose transport and glycogen synthase in skeletal muscle fibers

Author:

Azpiazu Iñaki1,Manchester Jill1,Skurat Alexander V.2,Roach Peter J.2,Lawrence John C.3

Affiliation:

1. Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110;

2. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202; and

3. Departments of Pharmacology and Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908

Abstract

The effects of transgenic overexpression of glycogen synthase in different types of fast-twitch muscle fibers were investigated in individual fibers from the anterior tibialis muscle. Glycogen synthase was severalfold higher in all transgenic fibers, although the extent of overexpression was twofold greater in type IIB fibers. Effects of the transgene on increasing glycogen and phosphorylase and on decreasing UDP-glucose were also more pronounced in type IIB fibers. However, in any grouping of fibers having equivalent malate dehydrogenase activity (an index of oxidative potential), glycogen was higher in the transgenic fibers. Thus increasing synthase is sufficient to enhance glycogen accumulation in all types of fast-twitch fibers. Effects on glucose transport and glycogen synthesis were investigated in experiments in which diaphragm, extensor digitorum longus (EDL), and soleus muscles were incubated in vitro. Transport was not increased by the transgene in any of the muscles. The transgene increased basal [14C]glucose into glycogen by 2.5-fold in the EDL, which is composed primarily of IIB fibers. The transgene also enhanced insulin-stimulated glycogen synthesis in the diaphragm and soleus muscles, which are composed of oxidative fiber types. We conclude that increasing glycogen synthase activity increases the rate of glycogen synthesis in both oxidative and glycolytic fibers, implying that the control of glycogen accumulation by insulin in skeletal muscle is distributed between the glucose transport and glycogen synthase steps.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3