Impact of high-fat diet and antioxidant supplement on mitochondrial functions and gene transcripts in rat muscle

Author:

Sreekumar R.1,Unnikrishnan J.1,Fu A.1,Nygren J.1,Short K. R.1,Schimke J.1,Barazzoni R.1,Nair K. Sreekumaran1

Affiliation:

1. Endocrinology Division, Mayo Clinic, Rochester, Minnesota 55905

Abstract

High-fat diets are reported to increase oxidative stress in a variety of tissues, whereas antioxidant supplementation prevents many diseases attributed to high-fat diet. Rodent skeletal muscle mitochondrial DNA has been shown to be a potential site of oxidative damage. We hypothesized that the effects of a high-fat diet on skeletal muscle DNA functions would be attenuated or partially reversed by antioxidant supplementation. Gene expression profiling and measurement of mitochondrial ATP production capacity were performed in skeletal muscle from male rats after feeding one of three diets (control, high-fat diet with or without antioxidants) for 36 wk. The high-fat diet altered transcript levels of 18 genes of 800 surveyed compared with the control-fed rats. Alterations included reduced expression of genes involved in free-radical scavenging and tissue development and increased expression of stress response and signal transduction genes. The magnitude of these alterations due to high-fat diet was reduced by antioxidant supplementation. Real-time PCR measurements confirmed the changes in transcript levels of cytochrome c oxidase subunit III and superoxide dismutase-1 and -2 noted by microarray approach. Mitochondrial ATP production was unaltered by dietary changes or antioxidant supplemention. It is concluded that the high-fat diet increases the transcription of genes involved in stress response but reduces those of free-radical scavenger enzymes, resulting in reduced DNA repair/metabolism (increased DNA damage). Antioxidants partially prevent these changes. Mitochondrial functions in skeletal muscle remain unaltered by the dietary intervention due to many adaptive changes in gene transcription.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3