Upregulation of the heme oxygenase system ameliorates postprandial and fasting hyperglycemia in type 2 diabetes

Author:

Ndisang Joseph Fomusi,Lane Nina,Jadhav Ashok

Abstract

In type 2 diabetes (T2D), postprandial and fasting hyperglycemia are important predictors of cardiovascular diseases; however, few drugs are currently available to simultaneously suppress these conditions. Here, we report an enduring antidiabetic effect of the heme oxygenase (HO) inducer hemin on Goto-Kakizaki rats (GK), a nonobese insulin-resistant T2D model. HO breaks down the heme-moiety-generating antioxidants (biliverdin/bilirubin and ferritin) and carbon monoxide, which stimulate insulin secretion. Hemin induces HO-1 to potentiate HO activity and the HO-derived products. Chronically applied hemin (30 mg/kg ip) for a month reduced and maintained fasting glucose at physiological levels for 3 mo. Before therapy, glucose levels were 9.3 ± 0.3 mmol/l ( n = 14). At 1, 2, and 3 mo posttherapy, we recorded 6.7 ± 0.13, 5.9 ± 0.2, and 7.2 ± 0.2 mmol/l, respectively. Hemin was also effective against postprandial hyperglycemia (14.6 ± 1.1 vs. 7.5 ± 0.4 mmol/l; n = 14; P < 0.01), and the effect remained sustained for 3 mo after therapy. The reduction of hyperglycemia was accompanied by enhanced HO-1, HO activity, and cGMP of the soleus muscle, alongside increased plasma bilirubin, ferritin, SOD, total antioxidant capacity, and insulin levels, whereas markers/mediators of oxidative stress like urinary-8-isoprostane and soleus muscle nitrotyrosine, NF-κB, and activator protein-1 and -2 were abated. Furthermore, inhibitors of insulin signaling including soleus muscle glycogen synthase kinase-3 and JNK were reduced, while the insulin-sensitizing adipokine, adiponectin, alongside AMPK were increased. Correspondingly, hemin improved glucose tolerance, suppressed insulin intolerance, reduced insulin resistance, and overturned the inability of insulin to enhance glucose transporter 4, a protein required for glucose uptake. Hemin also upregulated HO-1/HO activity and cGMP and lowered glucose in euglycemic Sprague-Dawley control rats albeit less intensely, suggesting greater selectivity of the HO system in diabetic conditions. In conclusion, reduced oxidative stress alongside the concomitant and paradoxical enhancement of insulin secretion and insulin-sensitizing pathways may account for the 3-mo-enduring antidiabetic effect. The synergistic interaction among HO, adiponectin, and GLUT4 may be explored against insulin-resistant diabetes.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Reference65 articles.

1. Pharmacological and Clinical Aspects of Heme Oxygenase

2. Heme Oxygenase: A Target Gene for Anti-Diabetic and Obesity

3. Apak R, Guclu K, Ozyurek M, Karademir SE, Altun M. Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: the CUPRAC method. Free Radic Res 39: 949–961, 2005.

4. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM. Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem 267: 18148–18153, 1992.

5. Caspase-8-mediated apoptosis induced by oxidative stress is independent of the intrinsic pathway and dependent on cathepsins

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3