Caspase-8-mediated apoptosis induced by oxidative stress is independent of the intrinsic pathway and dependent on cathepsins

Author:

Baumgartner Heidi K.,Gerasimenko Julia V.,Thorne Christopher,Ashurst Louise H.,Barrow Stephanie L.,Chvanov Michael A.,Gillies Stuart,Criddle David N.,Tepikin Alexei V.,Petersen Ole H.,Sutton Robert,Watson Alastair J. M.,Gerasimenko Oleg V.

Abstract

Cell-death programs executed in the pancreas under pathological conditions remain largely undetermined, although the severity of experimental pancreatitis has been found to depend on the ratio of apoptosis to necrosis. We have defined mechanisms by which apoptosis is induced in pancreatic acinar cells by the oxidant stressor menadione. Real-time monitoring of initiator caspase activity showed that caspase-9 (66% of cells) and caspase-8 (15% of cells) were activated within 30 min of menadione administration, but no activation of caspase-2, -10, or -12 was detected. Interestingly, when caspase-9 activation was inhibited, activation of caspase-8 was increased. Half-maximum activation ( t0.5) of caspase-9 occurred within ∼2 min and was identified at or in close proximity to mitochondria, whereas t0.5 for caspase-8 occurred within ∼26 min of menadione application and was distributed homogeneously throughout cells. Caspase-9 but not caspase-8 activation was blocked completely by the calcium chelator BAPTA or bongkrekic acid, an inhibitor of the mitochondrial permeability transition pore. In contrast, caspase-8 but not caspase-9 activation was blocked by the destruction of lysosomes (preincubation with Gly-Phe β-naphthylamide, a cathepsin C substrate), loss of lysosomal acidity (bafilomycin A1), or inhibition of cathepsin L or D. Using pepstatin A-BODIPY FL conjugate, we confirmed translocation of cathepsin D out of lysosomes in response to menadione. We conclude that the oxidative stressor menadione induces two independent apoptotic pathways within pancreatic acinar cells: the classical mitochondrial calcium-dependent pathway that is initiated rapidly in the majority of cells, and a slower, caspase-8-mediated pathway that depends on the lysosomal activities of cathepsins and is used when the caspase-9 pathway is disabled.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3