Electrotonic architecture of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions

Author:

Mainen Z. F.1,Carnevale N. T.1,Zador A. M.1,Claiborne B. J.1,Brown T. H.1

Affiliation:

1. Department of Psychology, Neuroengineering, Yale University, NewHaven, Connecticut 06511, USA.

Abstract

1. The spread of electrical signals in pyramidal neurons from the CA1 field of rat hippocampus was investigated through multicompartmental modeling based on three-dimensional morphometric reconstructions of four of these cells. These models were used to dissect the electrotonic architecture of these neurons, and to evaluate the equivalent cylinder approach that this laboratory and others have previously applied to them. Robustness of results was verified by the use of wide ranges of values of specific membrane resistance (Rm) and cytoplasmic resistivity. 2. The anatomy exhibited extreme departures from a key assumption of the equivalent cylinder model, the so-called "3/2 power law." 3. The compartmental models showed that the frequency distribution of steady-state electrotonic distances between the soma and the dendritic terminations was multimodal, with a large range and a sizeable coefficient of variation. This violated another central assumption of the equivalent cylinder model, namely, that all terminations are electronically equidistant from the soma. This finding, which was observed both for "centrifugal" (away from the soma) and "centripetal" (toward the soma) spread of electrical signals, indicates that the concept of an equivalent electrotonic length for the whole dendritic tree is not appropriate for these neurons. 4. The multiple peaks in the electrotonic distance distributions, whether for centrifugal or centripetal voltage transfer, were clearly related to the laminar organization of synaptic afferents in the CA1 region. 5. The results in the three preceding paragraphs reveal how little of the electrotonic architecture of these neurons is captured by a simple equivalent cylinder model. The multicompartmental model is more appropriate for exploring synaptic signaling and transient events in CA1 pyramidal neurons. 6. There was significant attenuation of synaptic potential, current, and charge as they spread from the dendritic tree to the soma. Charge suffered the least and voltage suffered the most attenuation. Attenuation depended weakly on Rm and strongly on synaptic location. Delay of time to peak was more distorted for voltage than for current and was more affected by Rm. 7. Adequate space clamp is not possible for most of the synapses on these cells. Application of a somatic voltage clamp had no significant effect on voltage transients in the subsynaptic membrane. 8. The possible existence of steep voltage gradients within the dendritic tree is consistent with the idea that there can be some degree of local processing and that different regions of the neuron may function semiautonomously. These spatial gradients are potentially relevant to synaptic plasticity in the hippocampus, and they also suggest caution in interpreting some neurophysiological results.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3