Bistability and its regulation by serotonin in the endogenously bursting neuron R15 in Aplysia

Author:

Lechner H. A.1,Baxter D. A.1,Clark J. W.1,Byrne J. H.1

Affiliation:

1. Department of Neurobiology and Anatomy, University of Texas MedicalSchool at Houston 77030, USA.

Abstract

1. Previous computational studies of models of neuron R15 in Aplysia have indicated that several distinct modes of electrical activity may coexist at a given set of parameters, that this multistability can be modulated by transmitters such as serotonin (5-HT) and that brief perturbations of the membrane potential can induce persistent changes in the mode of electrical activity. To test these predictions, the responses of R15 neurons to injections of brief (1.5 s) current pulses were recorded intracellularly in the absence and presence of 5-HT. 2. In the absence of 5-HT, brief perturbations induced abrupt transitions in the electrical activity from bursting to beating. Such transitions were observed in approximately 20% of the cases. The duration of beating activity varied from several seconds to tens of minutes. In the presence of low concentrations (1 microM) of 5-HT, both the probability of mode transitions and the duration of induced beating activity increased significantly. 3. These results indicate that at least two stable modes of electrical activity can coexist in R15 neurons and that this bistability can be regulated by 5-HT. In general, these conclusions agree with the results from analyses of mathematical models of R15. Although the function of these dynamic properties in R15 is speculative, our results, interpreted on the background of the model, support the notion that nonlinear dynamical properties of individual neurons can endow them with richer forms of information processing than has generally been appreciated.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3