A machine‐learning tool to identify bistable states from calcium imaging data

Author:

Varma Aalok1ORCID,Udupa Sathvik2,Sengupta Mohini1ORCID,Ghosh Prasanta Kumar2,Thirumalai Vatsala1ORCID

Affiliation:

1. National Centre for Biological Sciences Tata Institute of Fundamental Research Bangalore India

2. Department of Electrical Engineering Indian Institute of Science Bangalore India

Abstract

AbstractMapping neuronal activation using calcium imaging in vivo during behavioural tasks has advanced our understanding of nervous system function. In almost all of these studies, calcium imaging is used to infer spike probabilities because action potentials activate voltage‐gated calcium channels and increase intracellular calcium levels. However, neurons not only fire action potentials, but also convey information via intrinsic dynamics such as by generating bistable membrane potential states. Although a number of tools for spike inference have been developed and are currently being used, no tool exists for converting calcium imaging signals to maps of cellular state in bistable neurons. Purkinje neurons in the larval zebrafish cerebellum exhibit membrane potential bistability, firing either tonically or in bursts. Several studies have implicated the role of a population code in cerebellar function, with bistability adding an extra layer of complexity to this code. In the present study, we develop a tool, CaMLSort, which uses convolutional recurrent neural networks to classify calcium imaging traces as arising from either tonic or bursting cells. We validate this classifier using a number of different methods and find that it performs well on simulated event rasters as well as real biological data that it had not previously seen. Moreover, we find that CaMLsort generalizes to other bistable neurons, such as dopaminergic neurons in the ventral tegmental area of mice. Thus, this tool offers a new way of analysing calcium imaging data from bistable neurons to understand how they participate in network computation and natural behaviours. imageKey points Calcium imaging, compriising the gold standard of inferring neuronal activity, does not report cellular state in neurons that are bistable, such as Purkinje neurons in the cerebellum of larval zebrafish. We model the relationship between Purkinje neuron electrical activity and its corresponding calcium signal to compile a dataset of state‐labelled simulated calcium signals. We apply machine‐learning methods to this dataset to develop a tool that can classify the state of a Purkinje neuron using only its calcium signal, which works well on real data even though it was trained only on simulated data. CaMLsort (Calcium imaging and Machine Learning based tool to sort intracellular state) also generalizes well to bistable neurons in a different brain region (ventral tegmental area) in a different model organism (mouse). This tool can facilitate our understanding of how these neurons carry out their functions in a circuit.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3