Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra

Author:

Kowalski N.1,Depireux D. A.1,Shamma S. A.1

Affiliation:

1. Institute for Systems Research and Electrical Engineering Department, University of Maryland, College Park 20742–3311, USA.

Abstract

1. Responses of single units and multiunit clusters were recorded in the ferret primary auditory cortex (AI) with the use of broadband complex dynamic spectra. Previous work has demonstrated that simpler spectra consisting of single moving ripples (i.e., sinusoidally modulated spectral profiles that travel at a constant velocity along the logarithmic frequency axis) could be used effectively to characterize the response fields and transfer functions of AI cells. 2. A complex dynamic spectral profile can be thought of as being the sum of moving ripple spectra. Such a decomposition can be computed from a two-dimensional spectrotemporal Fourier transform of the dynamic spectral profile with moving ripples as the basis function. 3. Therefore, if AI units were essentially linear, satisfying the superposition principle, then their responses to arbitrary dynamic spectra could be predicted from the responses to single moving ripples, i.e., from the units' response fields and transfer functions (spectral and temporal impulse response functions, respectively). 4. This conjecture was tested and confirmed with data from 293 combinations of moving ripples, involving complex spectra composed of up to 15 moving ripples of different ripple frequencies and velocities. For each case, response predictions based on the unit transfer functions were compared with measured responses. The correlation between predicted and measured responses was found to be consistently high (84% with rho > 0.6). 5. The distribution of response parameters suggests that AI cells may encode the profile of a dynamic spectrum by performing a multiscale spectrotemporal decomposition of the dynamic spectral profile in a largely linear manner.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3