Composite receptive fields in the mouse auditory cortex

Author:

Lu Sihao1,Ang Grace W.Y.1,Steadman Mark1,Kozlov Andriy S.1ORCID

Affiliation:

1. Department of Bioengineering Imperial College London London UK

Abstract

AbstractA central question in sensory neuroscience is how neurons represent complex natural stimuli. This process involves multiple steps of feature extraction to obtain a condensed, categorical representation useful for classification and behaviour. It has previously been shown that central auditory neurons in the starling have composite receptive fields composed of multiple features. Whether this property is an idiosyncratic characteristic of songbirds, a group of highly specialized vocal learners or a generic property of sensory processing is unknown. To address this question, we have recorded responses from auditory cortical neurons in mice, and characterized their receptive fields using mouse ultrasonic vocalizations (USVs) as a natural and ethologically relevant stimulus and pitch‐shifted starling songs as a natural but ethologically irrelevant control stimulus. We have found that these neurons display composite receptive fields with multiple excitatory and inhibitory subunits. Moreover, this was the case with either the conspecific or the heterospecific vocalizations. We then trained the sparse filtering algorithm on both classes of natural stimuli to obtain statistically optimal features, and compared the natural and artificial features using UMAP, a dimensionality‐reduction algorithm previously used to analyse mouse USVs and birdsongs. We have found that the receptive‐field features obtained with both types of the natural stimuli clustered together, as did the sparse‐filtering features. However, the natural and artificial receptive‐field features clustered mostly separately. Based on these results, our general conclusion is that composite receptive fields are not a unique characteristic of specialized vocal learners but are likely a generic property of central auditory systems. imageKey points Auditory cortical neurons in the mouse have composite receptive fields with several excitatory and inhibitory features. Receptive‐field features capture temporal and spectral modulations of natural stimuli. Ethological relevance of the stimulus affects the estimation of receptive‐field dimensionality.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Wiley

Subject

Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3