Affiliation:
1. Department of Psychology and York Neuroimaging Centre, University of York, York, United Kingdom; and
2. Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
Abstract
Neuroimaging studies have revealed a number of regions in the human brain that respond to faces. However, the way these regions interact is a matter of current debate. The aim of this study was to use functional MRI to define face-selective regions in the human brain and then determine how these regions interact in a large population of subjects ( n = 72). We found consistent face selectivity in the core face regions of the occipital and temporal lobes: the fusiform face area (FFA), occipital face area (OFA), and superior temporal sulcus (STS). Face selectivity extended into the intraparietal sulcus (IPS), precuneus (PCu), superior colliculus (SC), amygdala (AMG), and inferior frontal gyrus (IFG). We found evidence for significant functional connectivity between the core face-selective regions, particularly between the OFA and FFA. However, we found that the covariation in activity between corresponding face regions in different hemispheres (e.g., right and left FFA) was higher than between different face regions in the same hemisphere (e.g., right OFA and right FFA). Although functional connectivity was evident between regions in the core and extended network, there were significant differences in the magnitude of the connectivity between regions. Activity in the OFA and FFA were most correlated with the IPS, PCu, and SC. In contrast, activity in the STS was most correlated with the AMG and IFG. Correlations between the extended regions suggest strong functional connectivity between the IPS, PCu, and SC. In contrast, the IFG was only correlated with the AMG. This study reveals that interhemispheric as well as intrahemispheric connections play an important role in face perception.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience