Affiliation:
1. Department of Psychology, University of York, York, United Kingdom
Abstract
Abstract
Neuroimaging studies have revealed a network of regions in both hemispheres of the human brain that respond selectively to faces. Neural models of face processing have typically focused on functional connectivity between regions in the same hemisphere (intrahemispheric), with a particular bias toward the right hemisphere. Here, we explored the role of interhemispheric connectivity using fMRI. We used three datasets to compare functional connectivity, as shown by correlations between the time-courses of neural activity of face regions during different natural viewing paradigms. We found higher correlations of neural activity between corresponding interhemispheric regions (e.g., rFFA–lFFA) than between intrahemispheric regions (e.g., rFFA–rOFA), indicating a bias towards higher interhemispheric than intrahemispheric connectivity. A similar interhemispheric bias was evident in scene-selective regions. In contrast, we did not find an interhemispheric bias in early visual regions (V1–V3), where intrahemispheric connectivity between corresponding regions was generally higher than interhemispheric connectivity. Next, we asked whether the higher interhemispheric connectivity in the face and scene networks between corresponding regions was consistent across participants. We found that the interhemispheric bias was significantly attenuated when we compared the time-course of response across participants. This shows that interhemispheric bias in connectivity between corresponding regions in the face and scene networks is specific to the individual. These findings raise the possibility that idiosyncratic variation in interhemispheric connectivity may explain individual differences in perception.