Affiliation:
1. Department of Biology, Georgia State University, Atlanta 30302–4010.
Abstract
1. The effect of mixture interactions in individual olfactory receptor cells of the spiny lobster on neural coding of odorant quality of binary mixtures and their components is examined in this paper. Extracellular responses of 98 olfactory receptor cells in the antennules of spiny lobsters to seven compounds [adenosine-5'-monophosphate (AMP), betaine (Bet), L-cysteine (Cys), L-glutamate (Glu), ammonium chloride (NH4), DL-succinate (Suc), taurine (Tau)] and their binary mixtures were recorded, and mixture interactions in individual olfactory receptor cells were identified. 2. Coding of odorant quality was evaluated by examining across neuron patterns (ANPs)--the relative response magnitudes across neuronal populations. ANPs are a feature of the neuronal population response and are a possible concentration-independent code of odorant quality in this system, as indicated by previous studies and present results. 3. For most binary mixtures the diversity of types and degrees of mixture interactions across the individual cells of a population of cells resulted in ANPs for each mixture to be different from the ANPs for the components of the mixture and different from the ANP predicted for the mixture from the responses to the components (Figs. 2–10). These effects are called pattern mixture interactions (PMIs). PMIs occurred for most binary mixtures, even those that did not produce statistically significant intensity mixture interactions (IMIs) for this same population of cells. 4. The results suggest that PMIs can influence coding of stimulus quality, in some cases by causing an improvement of the contrast between the quality of mixtures and some of their components.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献