Somatosensory responses in the cat motor cortex. I. Identification and course of an afferent pathway

Author:

Padel Y.1,Relova J. L.1

Affiliation:

1. Laboratoire de Neurosciences Fonctionnelles, Centre National de laRecherche Scientifique, Marseilles, France.

Abstract

1. The main aim of the present series of experiments was to demonstrate with electrophysiological methods that the spinothalamocortical system may send somesthetic information to the pyramidal and corticospinal tract cells in the motor cortex of the cat. 2. Experiments were carried out on acutely prepared cats anesthetized with alpha-chloralose. Extra- and intracellular recordings were made from the cells located in the pericruciate motor cortex (the lateral portion of area 4 gamma). They were identified by their antidromic responses to pyramidal stimulation and/or stimulation of the dorsolateral funiculus of the spinal cord. The animals were subjected to a set of nervous tissue lesions to prevent any transit of extereoceptive information to the motor cortex via the cerebellum and the somatosensory cortex. A lesion of the dorsal part of the spinal cord was also made, leaving intact only the afferent inflow ascending in the spinal ventral half, i.e., the spinothalamic system. 3. In this cat preparation it was observed that both electrical and natural stimulation of the limbs still efficiently activated the motor cortical efferent cells. 4. The pathway was mapped by applying microstimulation along its whole course in the spinal cord and brain stem. Stimulation of the primary afferent fibers running in the dorsal columns caudally to the spinal cord lesion produced activation and/or inhibition of the cortical cells. The existence of these responses may be attributable to the existence of collaterals from primary afferent fibers located in the dorsal columns, which activate the spinothalamic tract cells either mono- or polysynaptically. In the brain stem the fibers join the medial lemniscus. 5. In view of the short latency of the responses (mean latency 10.5 ms from the spinal cord) it is suggested that this component of the spinothalamic system may play an important role in the sensory regulation of ongoing movements.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3