Disinhibition of short-latency but not long-latency afferent inhibition of the lower limb during upper-limb muscle contraction

Author:

Kato Tatsuya12ORCID,Sasaki Atsushi12ORCID,Nakazawa Kimitaka1ORCID

Affiliation:

1. Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo

2. Japan Society for the Promotion of Science, Tokyo

Abstract

Research has demonstrated that motor and sensory functions of the lower limbs can be modulated by upper-limb muscle contractions. However, whether sensorimotor integration of the lower limb can be modulated by upper-limb muscle contractions is still unknown. [AQ: NR Original articles do not require structured abstracts. Hence, abstract subsections have been deleted. Please check.]Human sensorimotor integration has been studied using short- or long-latency afferent inhibition (SAI or LAI, respectively), which refers to inhibition of motor-evoked potentials (MEPs) elicited via transcranial magnetic stimulation by preceding peripheral sensory stimulation. In the present study, we aimed to investigate whether upper-limb muscle contractions could modulate the sensorimotor integration of the lower limbs by examining SAI and LAI. Soleus muscle MEPs following electrical tibial nerve stimulation (TSTN) during rest or voluntary wrist flexion were recorded at inter-stimulus intervals (ISIs) of 30 (i.e. SAI), 100, and 200 ms (i.e. LAI). The soleus Hoffman reflex following TSTN was also measured to identify whether MEP modulation occurred at the cortical or the spinal level. Results showed that lower-limb SAI, but not LAI, was disinhibited during voluntary wrist flexion. Furthermore, the soleus Hoffman reflex following TSTN during voluntary wrist flexion was unchanged when compared with that during the resting state at any ISI. Our findings suggest that upper-limb muscle contractions modulate sensorimotor integration of the lower limbs and that disinhibition of lower-limb SAI during upper-limb muscle contractions is cortically based.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3