Responses of olfactory receptor cells of spiny lobsters to binary mixtures. I. Intensity mixture interactions

Author:

Derby C. D.1,Girardot M. N.1,Daniel P. C.1

Affiliation:

1. Department of Biology, Georgia State University, Atlanta 30302–4010.

Abstract

1. Neural coding of chemical mixtures was studied with the use of the peripheral olfactory system of the spiny lobster. The occurrence of mixture interactions (i.e., where the observed response to a mixture deviates significantly from the expected response) in individual cells and the effect of such mixture interactions on the coding of odorant intensity by populations of cells were examined. 2. Extracellular recordings of spiking activity of 98 primary olfactory receptor cells in the antennules were measured in response to seven compounds [adenosine-5'-monophosphate (AMP), betaine (Bet), L-cysteine (Cys), L-glutamate (Glu), ammonium chloride (NH4), DL-succinate (Suc), and taurine (Tau)] and their binary mixtures. To identify mixture interactions, observed responses to a range of concentrations of a binary mixture were compared with the predicted responses based on three mathematical models: a single receptor model, which assumes that the two compounds of a mixture bind to the same receptor site; a multiple receptor model, which assumes that the two compounds bind to two independent receptor sites; and a mixed composition receptor model, which incorporates our current state of knowledge of transduction processes in olfactory receptor cells of spiny lobsters. 3. Mixture interactions in individual cells were common: statistically significant mixture interactions were observed in 25% of the possible cases (Fig. 5). Suppression was much more common than enhancement. 4. Mixture interactions had significant effects on the absolute response magnitudes for a population of cells, which could be used as the neural code for stimulus intensity in this system. These effects are called intensity mixture interactions (Figs. 6-11). Intensity mixture interactions occurred for approximately 50% of the binary mixtures and were almost exclusively suppression (Figs. 12 and 13). The intensity mixture interactions were concentration independent. 5. The results suggest that mixture interactions in individual olfactory cells can result in intensity mixture interactions in the neuronal population such that there is a decrease in sensitivity to binary mixtures relative to what is expected based on the responses to individual components of the mixtures.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3