Affiliation:
1. Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523; and Rocky Mountain Taste and Smell Center, University of Colorado Health Sciences Center, Denver, Colorado 80262
Abstract
Previous studies suggest that acetylcholine (ACh) is a transmitter released from taste cells as well as a transmitter in cholinergic efferent neurons innervating taste buds. However, the physiological effects on taste cells have not been established. I examined effects of ACh on taste-receptor cells by monitoring [Ca2+]i. ACh increased [Ca2+]i in both rat and mudpuppy taste cells. Atropine blocked the ACh response, butd-tubocurarine did not. U73122 , a phospholipase C inhibitor, and thapsigargin, a Ca2+-ATPase inhibitor that depletes intracellular Ca2+stores, blocked the ACh response. These results suggest that ACh binds to M1/M3/M5-like subtypes of muscarinic ACh receptors, causing an increase in inositol 1,4,5-trisphosphate and subsequent release of Ca2+ from the intracellular stores. A long incubation with ACh induced a transient response followed by a sustained phase of [Ca2+]i increase. In Ca2+-free solution, the sustained phases disappeared, suggesting that Ca2+ influx is involved in the sustained phase. Depletion of Ca2+ stores by thapsigargin alone induced Ca2+ influx. These findings suggest that Ca2+ store-operated channels may be present in taste cells and that they may participate in the sustained phase of [Ca2+]i increase. Immunocytochemical experiments indicated that the M1 subtype of muscarinic receptors is present in both rat and mudpuppy taste cells.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献