Bayesian optimal adaptation explains age-related human sensorimotor changes

Author:

Karmali Faisal12,Whitman Gregory T.23,Lewis Richard F.124

Affiliation:

1. Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts

2. Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts

3. Massachusetts Eye and Ear Infirmary, Boston, Massachusetts

4. Department of Neurology, Harvard Medical School, Boston, Massachusetts

Abstract

The brain uses information from different sensory systems to guide motor behavior, and aging is associated with simultaneous decline in the quality of sensory information provided to the brain and deterioration in motor control. Correlations between age-dependent decline in sensory anatomical structures and behavior have been demonstrated in many sensorimotor systems, and it has recently been suggested that a Bayesian framework could explain these relationships. Here we show that age-dependent changes in a human sensorimotor reflex, the vestibuloocular reflex, are explained by a Bayesian optimal adaptation in the brain occurring in response to death of motion-sensing hair cells. Specifically, we found that the temporal dynamics of the reflex as a function of age emerge from ( r = 0.93, P < 0.001) a Kalman filter model that determines the optimal behavioral output when the sensory signal-to-noise characteristics are degraded by death of the transducers. These findings demonstrate that the aging brain is capable of generating the ideal and statistically optimal behavioral response when provided with deteriorating sensory information. While the Bayesian framework has been shown to be a general neural principle for multimodal sensory integration and dynamic sensory estimation, these findings provide evidence of longitudinal Bayesian processing over the human life span. These results illuminate how the aging brain strives to optimize motor behavior when faced with deterioration in the peripheral and central nervous systems and have implications in the field of vestibular and balance disorders, as they will likely provide guidance for physical therapy and for prosthetic aids that aim to reduce falls in the elderly.NEW & NOTEWORTHY We showed that age-dependent changes in the vestibuloocular reflex are explained by a Bayesian optimal adaptation in the brain that occurs in response to age-dependent sensory anatomical changes. This demonstrates that the brain can longitudinally respond to age-related sensory loss in an ideal and statistically optimal way. This has implications for understanding and treating vestibular disorders caused by aging and provides insight into the structure-function relationship during aging.

Funder

HHS | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3