GnRH suppresses excitability of visual processing neurons in the optic tectum

Author:

Umatani Chie1,Misu Ryosuke2,Oishi Shinya2,Yamaguchi Kazuhiko3,Abe Hideki14,Oka Yoshitaka1

Affiliation:

1. Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan;

2. Laboratory of Bioorganic Medical Chemistry and Chemogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan;

3. Laboratory for Behavioral Genetics, RIKEN Brain Science Institute (BSI), Saitama, Japan; and

4. Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan

Abstract

Animals change their behavior in response to sensory cues in the environment as well as their physiological status. For example, it is generally accepted that their sexual behavior is modulated according to seasonal environmental changes or the individual's maturational/reproductive status, and neuropeptides have been suggested to play important roles in this process. Some behavioral modulation arises from neuropeptide modulation of sensory information processing in the central nervous system, but the neural mechanisms still remain unknown. Here we focused on the neural basis of neuropeptide modulation of visual processing in vertebrates. The terminal nerve neurons that contain gonadotropin-releasing hormone 3 (TN-GnRH3 neurons) are suggested to modulate reproductive behavior and have massive projections to the optic tectum (OT), which plays an important role in visual processing. In the present study, to examine whether GnRH3 modulates retino-tectal neurotransmission in the OT, we analyzed the effect of GnRH3 electrophysiologically and morphologically. We found that field potentials evoked by optic tract fiber stimulation, which represent retino-tectal neurotransmission, were modulated postsynaptically by GnRH3. Whole cell recording from postsynaptic neurons in the retino-tectal pathway suggested that GnRH3 activates large-conductance Ca2+-activated K+ (BK) channels and thereby suppresses membrane excitability. Furthermore, our improved morphological analysis using fluorescently labeled GnRH peptides showed that GnRH receptors are localized mainly around the cell bodies of postsynaptic neurons. Our results indicate that TN-GnRH3 neurons modulate retino-tectal neurotransmission by suppressing the excitability of projection neurons in the OT, which underlies the neuromodulation of behaviorally relevant visual information processing by the neuropeptide GnRH3.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3