Duration-Dependent Response of SI to Vibrotactile Stimulation in Squirrel Monkey

Author:

Simons S. B.,Chiu J.,Favorov O. V.,Whitsel B. L.,Tommerdahl M.

Abstract

In previous studies, we showed that the spatial and intensive aspects of the SI response to skin flutter stimulation are modified systematically as stimulus amplitude is increased. In this study, we examined the effects of duration of skin flutter stimulation on the spatiotemporal characteristics of the response of SI cortex. Optical intrinsic signal (OIS) imaging was used to study the evoked response in SI of anesthetized squirrel monkeys to 25-Hz sinusoidal vertical skin displacement stimulation. Four stimulus durations were tested (0.5, 1.0, 2.0, and 5.0 s); all stimuli were delivered to a discrete site on the glabrous skin of the contralateral forelimb. Skin stimulation evoked a prominent increase in absorbance within the forelimb regions in SI of the contralateral hemisphere. Responses to brief (0.5 s) stimuli were weaker and spatially more extensive than responses to longer duration stimuli (1.0, 2.0, and 5.0 s). Stimuli ≥1 s in duration suppressed responses to below background levels (decreased absorbance) in regions that surrounded the maximally activated region. The magnitude of the suppression in the surrounding regions was nonuniform and usually was strongest medial and posterior to the maximally activated region. The results show that sustained (≥1.0 s) stimulation decreases the spatial extent of the responding SI cortical population. Registration of the optical responses with the previously documented SI topographical organization strongly suggests that the cortical regions that undergo the strongest suppression represent skin sites that are normally co-stimulated during tactile exploration.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3