Spatial gradients and inhibitory summation in the rat whisker barrel system

Author:

Brumberg J. C.1,Pinto D. J.1,Simons D. J.1

Affiliation:

1. Department of Neurobiology, University of Pittsburgh, Pennsylvania15261, USA.

Abstract

1. Extracellular single-unit recordings and controlled whisker stimuli were used to compare response properties of cells in the barreloids of the ventral posterior medial nucleus of the thalamus and the barrels in the rat primary somatosensory cortex. Whiskers were deflected alone or in combinations involving up to four immediately adjacent whiskers to assess their relative inhibitory and excitatory contributions to individual receptive fields. Quantitative data were obtained from 51 thalamocortical units (TCUs), 79 "regular-spiking" barrel neurons (RSUs), and 5 "fast-spiking" barrel neurons (FSUs) in 28 normal female adult rats. 2. A random-noise generator was used to produce small, continuously varying whisker movements that were applied to one to four adjacent whiskers while the principal (columnar) whisker was displaced with the use of a ramp-and-hold deflection. RSUs displayed adjacent whisker-evoked inhibition that increased as the number of adjacent whiskers stimulated was incremented. Asymptotic levels of inhibition were reached with the application of the noise stimulus to two or three adjacent whiskers depending on which particular combinations were deflected. By contrast, TCUs and FSUs showed weak, or no, surround inhibition. 3. As the number of adjacent whiskers stimulated increased, the background (prestimulus) activity in TCUs and FSUs increased, whereas displayed background activity in RSUs was relatively unaffected. The increase in background activity observed in the FSUs is hypothesized to mediate adjacent whisker-evoked inhibition in the RSUs. 4. A spatial gradient of adjacent whisker inhibition was observed in RSUs. The caudally adjacent whisker evoked more inhibition than the rostrally adjacent whisker, and the ventral more than the dorsal. A cortical origin for the gradient is suggested by the finding that TCUs did not show a spatial inhibitory gradient. 5. As the noise stimulus was applied to an increasing number of adjacent whiskers, RSUs became more sharply tuned for deflection angles. Neither TCUs nor FSUs showed increases in angular tuning. 6. Inhibition worked disproportionately in RSUs to inhibit those responses that were initially the least robust. For example, inhibition was most effective at reducing responses to nonpreferred versus preferred whisker deflection angles. 7. To assess the principal whisker's effect on adjacent whisker excitatory responses, the noise stimulus was applied to the principal whisker. In RSUs, principal whisker-evoked inhibition was more potent than adjacent whisker-evoked inhibition. FSUs were excited to a greater extent by the application of the noise stimulus to the principal whisker than to adjacent whiskers. TCUs did not display principal whisker-evoked inhibition. 8. Inhibition within the barrel serves as a contrast enhancement mechanism to differentiate small versus large magnitude responses. Less vigorous responses, such as those associated with perturbations of noncolumnar whiskers and inputs from nonoptimal deflection angles, are more strongly suppressed. During active touch, when many whiskers simultaneously palpate an object, these inhibitory interactions could effectively increase the "principal whiskerness" of the cortical column.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3