CFTR inhibition mimics the cystic fibrosis inflammatory profile

Author:

Perez Aura,Issler Amanda C.,Cotton Calvin U.,Kelley Thomas J.,Verkman Alan S.,Davis Pamela B.

Abstract

Primary airway epithelial cells grown in air-liquid interface differentiate into cultures that resemble native epithelium morphologically, express ion transport similar to those in vivo, and secrete cytokines in response to stimuli. Comparisons of cultures derived from normal and cystic fibrosis (CF) individuals are difficult to interpret due to genetic differences besides CFTR. The recently discovered CFTR inhibitor, CFTRinh-172, was used to create a CF model with its own control to test if loss of CFTR-Cl conductance alone was sufficient to initiate the CF inflammatory response. Continuous inhibition of CFTR-Cl conductance for 3–5 days resulted in significant increase in IL-8 secretion at basal ( P = 0.006) and in response to 109 Pseudomonas ( P = 0.0001), a fourfold decrease in Smad3 expression ( P = 0.02), a threefold increase in RhoA expression, and increased NF-κB nuclear translocation upon TNF-α/IL-1β stimulation ( P < 0.000001). CFTR inhibition by CFTRinh-172 over this period does not increase epithelial sodium channel activity, so lack of Cl conductance alone can mimic the inflammatory CF phenotype. CFTRinh-172 does not affect IL-8, IL-6, or granulocyte/macrophage colony-stimulating factor secretion in two CF phenotype immortalized cell lines: 9/HTEo pCEP-R and 16HBE14o AS, or IL-8 secretion in primary CF cells, and inhibitor withdrawal abolishes the increased response, so CFTRinh-172 effects on cytokines are not direct. Five-day treatment with CFTRinh-172 does not affect cells deleteriously as evidenced by lactate dehydrogenase, trypan blue, ciliary activity, electron micrograph histology, and inhibition reversibility. Our results support the hypothesis that lack of CFTR activity is responsible for the onset of the inflammatory cascade in the CF lung.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3