Affiliation:
1. Research Service, Samuel S. Stratton Department of Veterans Affairs Medical Center, Albany, New York.
Abstract
Hyperoxic stress alters expression of genes involved in extracellular matrix (ECM) remodeling. To identify novel ECM-associated gene products positively regulated by hyperoxia, rat kidney cells were exposed to 95% O2, and the complement of [35S]methionine-labeled, saponin-resistant, ECM-associated proteins was compared with normoxic controls. O2-stressed cells accumulated significantly greater ECM levels (approximately 3- to 4-fold that of control cells) of a 52-kDa glycoprotein (p52), recently identified as the matrix form of plasminogen activator inhibitor type 1 (PAI-1) (P.J. Higgins, P. Chaudhari, and M.P. Ryan. Biochem. J. 273: 651-658, 1991; P. J. Higgins, M. P. Ryan, R. Zeheb, T. D. Gelehrter, P. Chaudhari. J. Cell. Physiol. 143:321-329, 1990), which peaked at 48 h of exposure. Hyperoxia-associated increases in ECM p52(PAI-1) content reflected parallel elevations in p52(PAI-1) mRNA abundance. Similar results were obtained using secondary cultures of rat pulmonary fibroblasts. This 48-h period of maximal hyperoxia-induced p52(PAI-1) expression in vitro was used to design subsequent in vivo studies. Adult rats were exposed to 99% O2 for 24–50 h, and RNA was extracted from the pulmonary tissue of stressed and control animals. A 5- to 8-fold and 6- to 15-fold increase in lung p52(PAI-1) mRNA content was evident in hyperoxia-treated rats at 24 and 50 h, respectively. All of this increase occurred in the defined 3.2-kb species of rat p52(PAI-1) mRNA. Actin mRNA levels increased three- to sevenfold as a function of hyperoxic stress, whereas catalase and glyceraldehyde-3-phosphate dehydrogenase mRNA abundance was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献