Biotinylation of membrane proteins accessible via the pulmonary circulation in normal and hyperoxic rats

Author:

De La Fuente E. K.1,Dawson C. A.1,Nelin L. D.1,Bongard R. D.1,McAuliffe T. L.1,Merker M. P.1

Affiliation:

1. Department of Anesthesiology, Medical College of Wisconsin, Milwaukee53226, USA.

Abstract

It is well established that the phenotype of the pulmonary vascular surface can be affected by injurious stimuli, but the few proteins for which the expression and/or activity have been studied make up only a small fraction of the entire spectrum of luminal cell membrane proteins. To expand the capability for studying such proteins, we developed a method for biotinylating cell membrane proteins accessible via the vascular lumen in the isolated-perfused rat lung and examined the impact of hyperoxia on the spectrum of the biotinylated proteins. Labeling was carried out either by single-pass bolus injection of the cell impermeant biotinylation reagent sulfosuccinimidyl 6-biotin-amido hexanoate (NHS-LC-biotin) into the pulmonary artery cannula or by the addition of NHS-LC-biotin to a lung homogenate. Lung membrane fractions were prepared, and the proteins were separated by SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose by electroblotting. The biotinylated proteins were visualized using a chemiluminescent substrate for streptavidin-linked horseradish peroxidase. The spectrum of proteins biotinylated via the vasculature was distinct from that of the biotinylated lung homogenate. Lectin affinity purification of biotinylated proteins from the lung membrane fractions of normal lungs biotinylated via the vasculature revealed characteristic spectra that were reproducibly different from those from rats exposed to hyperoxia for 48-60 h. These results demonstrate that biotinylation of membrane proteins accessible to an extracellular reagent during a single transit through the pulmonary vascular bed is feasible and that the spectrum of these labeled proteins reveals the effects of hyperoxic lung injury. The affinity of biotin for streptavidin makes this procedure potentially useful as a means of separating the labeled membrane proteins from the much larger population of membrane proteins that are not accessible via the vasculature, e.g., intracellular membrane proteins and plasma membrane proteins of cell types in luminally inaccessible regions of the intact lung. The consistent changes in the spectrum of labeled proteins seen with hyperoxia suggest that in itself the spectrum may be a useful encryption of certain aspects of vascular pathophysiology.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3