5'-Adenylylimidodiphosphate does not activate CFTR chloride channels in cell-free patches of membrane

Author:

Carson M. R.1,Welsh M. J.1

Affiliation:

1. Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel requires both phosphorylation of its R domain and the presence of nucleoside triphosphates for activation. Our previous work suggested that hydrolysis of nucleoside triphosphates may be required to support channel activity. However, recent studies have suggested that the nonhydrolyzable adenosine triphosphate analogue, 5'-adenylylimidodiphosphate (AMP-PNP), may support some Cl- channel activity in sweat gland duct epithelia in the presence of low ATP concentration and in Cl- channels associated with expression of the P-glycoprotein multidrug resistance transporter. To examine the effect of AMP-PNP, we applied it to the cytosolic surface of phosphorylated CFTR Cl- channels contained in excised, cell-free patches of membrane. We found that preparations of 10 mM AMP-PNP opened phosphorylated CFTR Cl- channels. However, this effect was due to contaminating ATP: high-pressure liquid chromatography analysis of AMP-PNP demonstrated that 10 mM AMP-PNP could contain up to 50 microM ATP, which could account for the observed stimulation of CFTR Cl- channel activity. When contaminating ATP was hydrolyzed with hexokinase, AMP-PNP was unable to support CFTR channel activity. AMP-PNP (10 mM) also failed to attenuate or potentiate the current induced by 0.3 mM ATP. These results suggest that AMP-PNP has no direct effect on CFTR Cl- channels.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3