Hydraulic conductance of lung endothelial phenotypes and Starling safety factors against edema

Author:

Parker James C.

Abstract

Recent permeability studies comparing endothelial cell phenotypes derived from alveolar and extra-alveolar vessels have significant implications for interpreting the mechanisms of fluid homeostasis in the intact lung. These studies indicate that confluent monolayers of rat pulmonary microvascular endothelial cells had a hydraulic conductance ( Lp) that was only 5% and a transendothelial flux rate for 72-kDa dextran only 9% of values determined for rat pulmonary artery endothelial cell monolayers. On the basis of previous studies partitioning the filtration coefficients between alveolar and extra-alveolar vascular segments in rat lungs and previous studies of lymph albumin fluxes and permeability, the contribution of the alveolar capillary segment to total albumin flux in lymph was estimated to be less than 10%. In addition, the Starling safety factors against the edema calculated for the alveolar capillaries are quite different from those estimated for whole lung. Estimates of the edema safety factor due to increased filtration across the alveolar capillary wall based on the low Lp indicate it is quantitatively the greatest safety factor, although it would be a minor safety factor for extra-alveolar vessels. Also, a markedly higher effective protein osmotic absorptive force for plasma proteins must occur in the capillaries relative to extra-alveolar vessels. The lower Lp for alveolar capillaries also has implications for the sequence of hydrostatic edema formation, and it also may have a role in preventing exercise-induced alveolar flooding.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3