Ca2+ entry is essential for cell strain-induced lamellar body fusion in isolated rat type II pneumocytes

Author:

Frick Manfred,Bertocchi Cristina,Jennings Paul,Haller Thomas,Mair Norbert,Singer Wolfgang,Pfaller Walter,Ritsch-Marte Monika,Dietl Paul

Abstract

Using a new equibiaxial strain device, we investigated strain-induced Ca2+ signals and their relation to lamellar body (LB) exocytosis in single rat alveolar type II (AT II) cells. The strain device allows observation of single cells while inducing strain to the entire substratum. AT II cells tolerated high strain amplitudes up to 45% increase in cell surface area (ΔCSA) without release of lactate dehydrogenase or ATP. Strain exceeding a threshold of ∼8% ΔCSA resulted in a transient rise of the cytoplasmic Ca2+ concentration in some cells. Higher strain levels increased the fraction of Ca2+-responding cells. The occurrence of strain-induced Ca2+ signals depended on cell-cell contacts, because lone cells (i.e., cells without cell-cell contacts) did not exhibit Ca2+ signals. Above threshold, the amplitude of the Ca2+ signal as well as the number of stimulated LB fusions correlated well with the amplitude of strain. Furthermore, stimulated LB fusions occurred only in cells exhibiting a Ca2+ signal; 50 μM Gd3+ in the bath affected neither Ca2+ signals nor fusions. Intracellular Ca2+ release was triggered at higher strain amplitudes and inhibited by thapsigargin. Removal of bath Ca2+ completely inhibited Ca2+ signals and fusions. We conclude that strain of AT II cells stimulates a Ca2+ entry pathway that is highly sensitive to strain and a prerequisite for subsequent Ca2+ release. Both mechanisms result in a graded response of fusions to strain. Our data also allow us to introduce the term “effective strain” as the physiologically relevant portion of the strain amplitude.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3