[Ca2+]i oscillations regulate type II cell exocytosis in the pulmonary alveolus

Author:

Ashino Yugo1,Ying Xiaoyou1,Dobbs Leland G.2,Bhattacharya Jahar13

Affiliation:

1. Department of Medicine and

2. Cardiovascular Research Institute, Departments of Medicine and Pediatrics, University of California, San Francisco, California 94118

3. Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons and St. Luke's Roosevelt Hospital Center, Columbia University, New York, New York 10019; and

Abstract

Pulmonary surfactant, a critical determinant of alveolar stability, is secreted by alveolar type II cells by exocytosis of lamellar bodies (LBs). To determine exocytosis mechanisms in situ, we imaged single alveolar cells from the isolated blood-perfused rat lung. We quantified cytosolic Ca2+ concentration ([Ca2+]i) by the fura 2 method and LB exocytosis as the loss of cell fluorescence of LysoTracker Green. We identified alveolar cell type by immunofluorescence in situ. A 15-s lung expansion induced synchronous [Ca2+]i oscillations in all alveolar cells and LB exocytosis in type II cells. The exocytosis rate correlated with the frequency of [Ca2+]i oscillations. Fluorescence of the lipidophilic dye FM1-43 indicated multiple exocytosis sites per cell. Intracellular Ca2+ chelation and gap junctional inhibition each blocked [Ca2+]i oscillations and exocytosis in type II cells. We demonstrated the feasibility of real-time quantifications in alveolar cells in situ. We conclude that in lung expansion, type II cell exocytosis is modulated by the frequency of intercellularly communicated [Ca2+]i oscillations that are likely to be initiated in type I cells. Thus during lung inflation, type I cells may act as alveolar mechanotransducers that regulate type II cell secretion.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3