CYR61 (CCN1) overexpression induces lung injury in mice

Author:

Grazioli Serge12,Gil Sucheol2,An Dowon2,Kajikawa Osamu2,Farnand Alex W.2,Hanson Josiah F.2,Birkland Timothy2,Chen Peter2,Duffield Jeremy3,Schnapp Lynn M.2,Altemeier William A.2,Matute-Bello Gustavo24

Affiliation:

1. Pediatric Critical Care Unit, University Hospital of Geneva, Geneva, Switzerland;

2. Center for Lung Biology, Division of Pulmonary and Critical Medicine, Department of Medicine, University of Washington, Seattle, Washington;

3. Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington;

4. Veterans Affairs Puget Sound Healthcare System, Seattle, Washington

Abstract

Cysteine-rich protein-61 (CYR61), also known as connective tissue growth factor, CYR61, and nephroblastoma overexpressed gene 1 (CCN1), is a heparin-binding protein member of the CCN family of matricellular proteins. Gene expression profiles showed that Cyr61 is upregulated in human acute lung injury (ALI), but its functional role is unclear. We hypothesized that CYR61 contributes to ALI in mice. First, we demonstrated that CYR61 expression increases after bleomycin-induced lung injury. We then used adenovirus-mediated gene transfer to determine whether CYR61 overexpression in the lungs was sufficient to cause ALI. Mice instilled with CYR61 adenovirus showed greater weight loss, increased bronchoalveolar lavage total neutrophil counts, increased protein concentrations, and increased mortality compared with mice instilled with empty-vector adenovirus. Immunohistochemical studies in lungs from humans with idiopathic pulmonary fibrosis revealed CYR61 expression on the luminal membrane of alveolar epithelial cells in areas of injury. We conclude that CYR61 is upregulated in ALI and that CYR61 overexpression exacerbates ALI in mice.

Funder

Swiss National Science Foundation (Schweizerische Nationalfonds)

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

HHS | NIH | National Heart, Lung, and Blood Institute

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3