Impaired TLR4 and HIF expression in cystic fibrosis bronchial epithelial cells downregulates hemeoxygenase-1 and alters iron homeostasis in vitro

Author:

Chillappagari Shashi1234,Venkatesan Shalini534,Garapati Virajith1234,Mahavadi Poornima534,Munder Antje67,Seubert Andreas8,Sarode Gaurav13,Guenther Andreas5934,Schmeck Bernd T.234,Tümmler Burkhard67,Henke Markus O.1341011

Affiliation:

1. Department of Medicine, Pulmonary Critical Care Philipps University, Marburg, Germany;

2. Institute for Lung Research, Philipps-University, Marburg, Germany;

3. Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany;

4. Member of the German Center for Lung Research (DZL);

5. Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany;

6. Clinical Research Group ‘Molecular Pathology of Cystic Fibrosis and Pseudomonas Genomics’, Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany;

7. Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Germany;

8. Department of Chemistry-Biochemistry, Philipps University, Marburg, Germany;

9. Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany;

10. Pneumology, Asklepios Fachkliniken München-Gauting, Germany;

11. Comprehensive Pneumology Center (CPC), Helmholtz Zentrum, Munich, Germany

Abstract

Hemeoxygenase-1 (HO-1), an inducible heat shock protein, is upregulated in response to multiple cellular insults via oxidative stress, lipopolysaccharides (LPS), and hypoxia. In this study, we investigated in vitro the role of Toll-like receptor 4 (TLR4), hypoxia-inducible factor 1α (HIF-1α), and iron on HO-1 expression in cystic fibrosis (CF). Immunohistochemical analysis of TLR4, HO-1, ferritin, and HIF-1α were performed on lung sections of CFTR−/− and wild-type mice. CFBE41o- and 16HBE14o- cell lines were employed for in vitro analysis via immunoblotting, immunofluorescence, real-time PCR, luciferase reporter gene analysis, and iron quantification. We observed a reduced TLR4, HIF-1α, HO-1, and ferritin in CFBE41o- cell line and CF mice. Knockdown studies using TLR4-siRNA in 16HBE14o- revealed significant decrease of HO-1, confirming the role of TLR4 in HO-1 downregulation. Inhibition of HO-1 using tin protoporphyrin in 16HBE14o- cells resulted in increased iron levels, suggesting a probable role of HO-1 in iron accumulation. Additionally, sequestration of excess iron using iron chelators resulted in increased hypoxia response element response in CFBE41o- and 16HBE14o-, implicating a role of iron in HIF-1α stabilization and HO-1. To conclude, our in vitro results demonstrate that multiple regulatory factors, such as impaired TLR4 surface expression, increased intracellular iron, and decreased HIF-1α, downregulate HO-1 expression in CFBE41o- cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3