Kv1.3 potassium channels in human alveolar macrophages

Author:

Mackenzie Amanda B.1,Chirakkal Hari1,North R. Alan1

Affiliation:

1. Institute of Molecular Physiology, University of Sheffield, Sheffield S10 2TN, United Kingdom

Abstract

Human alveolar macrophages were obtained from macroscopically normal lung tissue obtained at surgical resections, isolated by adherence, and identified by morphology. Whole cell recordings were made from cells 1-3 h in culture, using electrodes containing potassium chloride. From a holding potential of -100 mV, depolarizing pulses to -40 mV or greater activated an outward current. Tail current reversals showed that this current was potassium selective. Margatoxin completely blocked the current; the concentration giving half-maximal block was 160 pM. In current clamp recordings, the resting membrane potential was -34 mV; margatoxin depolarized cells to close to 0 mV. A pure macrophage population was isolated by fluorescence-activated cell sorting, using the phagocytosis of BODIPY-labeled zymosan particles. Reverse transcription-polymerase chain reaction showed that, of 13 voltage-gated K+ (Kv) potassium channels sought, only Kv1.3 mRNA was present. Margatoxin (1 nM) did not affect the percentage of cells showing phagocytosis sorted from the total population. Under these experimental conditions Kv1.3 sets the resting potential of the cells, but it is not required for Fc receptor-mediated phagocytosis.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kv1.3 in the spotlight for treating immune diseases;Expert Opinion on Therapeutic Targets;2024-02

2. The contribution of ion channels to shaping macrophage behaviour;Frontiers in Pharmacology;2022-09-07

3. ML365 inhibits TWIK2 channel to block ATP-induced NLRP3 inflammasome;Acta Pharmacologica Sinica;2021-08-02

4. Review on Biological Characteristics of Kv1.3 and Its Role in Liver Diseases;Frontiers in Pharmacology;2021-05-21

5. Electroimmunology and cardiac arrhythmia;Nature Reviews Cardiology;2021-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3