Constitutive eNOS-derived nitric oxide is a determinant of endothelial junctional integrity

Author:

Predescu Dan,Predescu Sanda,Shimizu Jun,Miyawaki-Shimizu Kayo,Malik Asrar B.

Abstract

Basal vascular endothelial permeability is normally kept low in part by the restrictiveness of interendothelial junctions (IEJs). We investigated the possible role of nitric oxide (NO) in controlling IEJ integrity and thereby regulating basal vascular permeability. We determined the permeability of continuous endothelia in multiple murine vascular beds, including lung vasculature, of wild-type mice, endothelial nitric oxide synthase (eNOS) null mice, and mice treated with NOS inhibitor N-nitro-l-arginine methyl ester (l-NAME). Light and electron microscopic studies revealed that l-NAME treatment resulted in IEJs opening within a few minutes with a widespread response within 30 min. We observed a 35% increase in transendothelial transport of albumin, using as tracer dinitrophenylated albumin in mouse lungs and other organs studied. To rule out the involvement of blood cells in the mechanism of increased endothelial permeability, vascular beds were flushed free of blood, treated with l-NAME, and perfused with the tracer. The open IEJs observed in these studies indicated a direct role for NO in preserving the normal structure of endothelial junctions. We also used the electron-opaque tracer lanthanum chloride to assess vascular permeability. Lanthanum chloride was presented by perfusion to various vascular beds of mice lacking NO. Open IEJs were seen only in capillary and venular endothelial segments of mice lacking NO, and there was a concomitant increase in vascular permeability to the tracer. Together, these data demonstrate that constitutive eNOS-derived NO is a crucial determinant of IEJ integrity and thus serves to maintain the low basal permeability of continuous endothelia.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3