Affiliation:
1. Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona 85724-5051; and
2. Department of Anatomy, University of California, San Francisco, California 94143-0452
Abstract
Inhibition of nitric oxide (NO) synthesis using N G-nitro-l-arginine methyl ester (l-NAME) or N G-monomethyl-l-arginine (l-NMMA) increases venular permeability in the rat mesentery (I. Kurose, R. Wolf, M. B. Grisham, T. Y. Aw, R. D. Specian, and D. N. Granger. Circ. Res. 76: 30–39, 1995), but the cellular mechanisms of this response are not known. This study was performed to determine whether such venular leaks are associated with changes in the endothelial actin cytoskeleton. In anesthetized Sprague-Dawley rats, the microvasculature of a mesenteric window was perfused with buffered saline, with or without 10−5M l-NAME,l-NMMA, or the inactive enantiomer N G-nitro-d-arginine methyl ester for 3 or 30 min. FITC-albumin was added to the perfusate for the last 3 min. The vasculature was perfusion fixed, stained for filamentous actin and for mast cells, and viewed microscopically. In control preparations, venules showed few FITC-albumin leaks and the endothelial actin cytoskeleton consisted of a peripheral rim along the cell-cell junctions. Preparations treated withl-NAME orl-NMMA showed significantly more leakage, the actin rims in leaky venules were discontinuous, and short, randomly oriented fibers appeared within the cells. In nonleaky venules, the peripheral actin rims sometimes contained small, equally spaced discontinuities not seen in control preparations. Although a mast cell stabilizer was used, 27–70% of the mast cells were degranulated in the presence ofl-NMMA. Thus inhibition of NO synthesis alters the endothelial cytoskeleton and increases albumin leakage from mesenteric venules, either directly or indirectly via the involvement of mast cells.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献