LncRNA MALAT1, an lncRNA acting via the miR-204/ZEB1 pathway, mediates the EMT induced by organic extract of PM2.5 in lung bronchial epithelial cells

Author:

Luo Fei1,Wei Hongying2,Guo Huaqi1,Li Yan1,Feng Yan1,Bian Qian3,Wang Yan12

Affiliation:

1. Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

2. The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China

3. Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China

Abstract

Extensive cohort studies have explored the hazards of particulate matter with aerodynamic diameter 2.5 μm or smaller (PM2.5) to human respiratory health; however, the molecular mechanisms for PM2.5 carcinogenesis are poorly understood. Long non-coding RNAs (lncRNAs) are involved in various pathophysiological processes. In the present study, we investigated the effect of PM2.5 on the epithelial-mesenchymal transition (EMT) in lung bronchial epithelial cells and the underlying mechanisms mediated by an lncRNA. Organic extracts of PM2.5 from Shanghai were used to treat human bronchial epithelial cell lines (HBE and BEAS-2B). The PM2.5 organic extracts induced the EMT and cell transformation. High levels of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), mediated by NF-κB, were involved in the EMT process. For both cell lines, there was a similar response. In addition, MALAT1 interacted with miR-204 and reversed the inhibitory effect of its target gene, ZEB1, thereby contributing to the EMT and malignant transformation. In sum, these findings show that NF-κB transcriptionally regulates MALAT1, which, by binding with miR-204 and releasing ZEB1, promotes the EMT. These results offer an understanding of the regulatory network of the PM2.5-induced EMT that relates to the health risks associated with PM2.5.

Funder

the Natural Science Foundations of China

the natural science foundations of China

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3