Biophysical and molecular properties of amiloride-inhibitable Na+ channels in alveolar epithelial cells

Author:

Matalon S.1,Benos D. J.1,Jackson R. M.1

Affiliation:

1. Department of Anesthesiology, University of Alabama at Birmingham35233-6810, USA. Sadis.Matalon@ccc.uab.edu

Abstract

The recent immunopurification and cloning of various lung Na+ channel proteins has provided the necessary tools to study Na+ transport at a fundamental level across a number of epithelial tissues. Various macroscopic measurements of Na+ transport have shown that Na+ ions enter the cytoplasm of alveolar cells mainly through amiloride-inhibitable Na+ channels. Molecular biology studies have shown the existence of three Na+ channel subunit mRNAs (alpha-, beta-, and gamma-rENaC) in mature fetal (FDLE) and adult alveolar type II (ATII) cells. Patch-clamp studies have demonstrated the existence of various types of amiloride-inhibitable Na+ channels, located in the apical membranes of FDLE and ATII cells. beta-Agonists and agents that enhance intracellular adenosine 3',5'-cyclic monophosphate levels increase the open probability of these channels, leading to increased Na+ transport across the alveolar epithelium in vivo. Immunopurification of a putative channel protein from adult ATII cells showed that it contains an amiloride-binding subunit with a molecular mass of 150 kDa. When this protein was reconstituted in planar lipid bilayers, it exhibited single channels with a conductance of 25 pS, which were moderately selective for Na+ over K+. The open probability of these channels was increased by the addition of protein kinase A (PKA) and ATP, and was decreased to the same extent by addition of [N-ethyl-N-isopropyl]-2'-4'-amiloride (EIPA) and amiloride (1 microM each) in the apical side of the bilayer, in agreement with the results of patch-clamp studies in ATII cells. Exposure of rats to sublethal hyperoxia increased alpha-rENaC mRNA and the functional expression of Na+ channels in alveolar epithelial cells and limited alveolar edema. These findings indicate that alveolar epithelial channels contain at least one family of amiloride-sensitive Na+ channel proteins, which displays a number of unique properties, including sensitivity to EIPA.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3