Pulmonary-specific expression of SP-D corrects pulmonary lipid accumulation in SP-D gene-targeted mice

Author:

Fisher James H.1,Sheftelyevich Vladimir1,Ho Ye-Shih2,Fligiel Suzanne3,McCormack Francis X.4,Korfhagen Thomas R.5,Whitsett Jeffrey A.5,Ikegami Machiko5

Affiliation:

1. Pulmonary/Critical Care Medicine, Denver Health Medical Center and University of Colorado Health Sciences Center, Denver, Colorado 80262;

2. Institute of Chemical Toxicology, Wayne State University, and

3. Department of Pathology, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan 48201

4. Pulmonary and Critical Care Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio 45229-3039;

5. Division of Pulmonary Biology, Children's Hospital Medical Center, and

Abstract

Targeted disruption of the surfactant protein (SP) D ( SP-D) gene caused a marked pulmonary lipoidosis characterized by increased alveolar lung phospholipids, demonstrating a previously unexpected role for SP-D in surfactant homeostasis. In the present study, we tested whether the local production of SP-D in the lung influenced surfactant content in SP-D-deficient [SP-D(−/−)] and SP-D wild-type [SP-D(+/+)] mice. Rat SP-D (rSP-D) was expressed under control of the human SP-C promoter, producing rSP-D, SP-D(+/+) transgenic mice. SP-D content in bronchoalveolar lavage fluid was increased 30- to 50-fold in the rSP-D, SP-D(+/+) mice compared with the SP-D(+/+) parental strain. Lung morphology, phospholipid content, and surfactant protein mRNAs were unaltered by the increased concentration of SP-D. Likewise, the production of endogenous mouse SP-D mRNA was not perturbed by the SP-D transgene. rSP-D, SP-D(+/+) mice were bred to SP-D(−/−) mice to assess whether lung-selective expression of SP-D might correct lipid homeostasis abnormalities in the SP-D(−/−) mice. Selective expression of SP-D in the respiratory epithelium had no adverse effects on lung function, correcting surfactant phospholipid content and decreasing phosphatidylcholine incorporation significantly. SP-D regulates surfactant lipid homeostasis, functioning locally to inhibit surfactant phospholipid incorporation in the lung parenchyma and maintaining alveolar phospholipid content in the alveolus. Marked increases in biologically active tissue and alveolar SP-D do not alter lung morphology, macrophage abundance or structure, or surfactant accumulation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3